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The problem of the steady oscillations of an unbounded liquid with a free surface in the presence of a system of submerged 
horizontal cylindrical bodies of arbitrary cross-section is considered. The problem describes the interaction of bodies with waves 
which propagate at an arbitrary angle to the generatrix of the system of bodies and, also, the oscillations of a liquid in a channel 
with vertical walls. The criterion of uniqueness, proposed earlier in [1], is developed to find estimates of the trapped-mode 
frequencies. Estimates are obtained of the frequencies which are both in the continuous spectrum of the problem as well as 
outside it. Results of calculations are presented and a comparison is made with existing estimates. �9 2005 Elsevier Ltd. All rights 
reserved. 

1. F O R M U L A T I O N  OF THE P R O B L E M  

The problem of the steady oscillations of an ideal incompressible heavy liquid of infinite depth with a 
free surface in the presence of fully submerged cylindrical bodies of arbitrary cross-section, is considered. 
It is assumed that the motion of the liquid is irrotational and harmonic in time with a frequency co. The 
linear approximation of the theory of surface waves is used. Here, the boundary conditions are referred 
to the unperturbed free surface. 

We shall consider two situations: (1) the liquid is unbounded in the horizontal directions and the 
generatrix of the system of cylindrical bodies z makes and arbitrary non-zero angle 0 with the direction 
of propagation of the surface waves, (2) the liquid is confined in a channel with vertical walls which 
are orthogonal to the generatrix of the system of cylindrical bodies. The notation is introduced in Fig. 
1, where a section in a plane which is orthogonal to the generatrix of the cylinders is shown: W is the 
domain occupied by the liquid, S is the wetted surface of the bodies, F is the free surface y = 0 and n 
is the unit normal. 

We will first consider the case of a liquid which is unbounded in the horizontal directions. It is assumed 
that the motion of the liquid is periodic in the variable z, and it is then described by a velocity potential 
Re{u(x, y)e+-ikze-i~}, w h e r e  k = vsin0 is the projection of the wave vector onto the z axis, v = c02/g is 
the wave number andg is the acceleration due to gravity. The potential u satisfies the following boundary- 
value problem 

(V 2-k2)u = 0 in W (1.1) 

ayU-VU = 0 in F (1.2) 

a.u  = f in S (1.3) 

17ul = O(Ix + iyl M) when Ix + iyl ---) oo (1.4) 
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(here and henceforth Oa = O/3a). Condition (1.4) must be uniformly satisfied with respect to 
arg(x + iy) for a certain M > 0. The function f i n  condition (1.3) is determined by the type of problem 
(radiation or diffraction). In order to describe the process of the radiation or scattering of waves, problem 
(1.1)-(1.4) must be augmented with the conditions which determine the form of the wave motion at 
infinity 

I I~[xlu-ilul2dy = 0(1) when r--~oo; 1 = v2~-~-k 2 

Wc~ {Ix[ = r} 

(1.5) 

The case when v = k (the passage of a wave along the generatrix of the cylinders) must be excluded 
from the treatment (see [2]). 

This problem also describes the oscillations of a liquid in a channel of infinite depth with vertical 
walls z = ___b, when the generatrix of the system of cylindrical bodies is orthogonal to the wails. In this 
case, the motion of the liquid is described by the velocity potential Re{u(x, y)e -i~ coskz, where 
kb = nn (n = 1, 2, ...) or the potential Re{u(x,y) ~~ sinkz, where kb = (2n - 1)n/2 (n = 1, 2, ...) (in 
this case, the condition ~nu = 0 is satisfied on the walls). Unlike a liquid which is boundless in the 
horizontal directions, a combination of parameters v < k is possible in this case. 

An expansion at infinity has been obtain [3, pp. 815, 822] in the form of a linear combination of regular 
wave solutions eVysin/x, eVycosLv, a source (see (2.1)), a horizontal dipole and a series consisting of wave- 
free solutions (see (2.7)), wherex0 = 0,y0 = 0) for any potential which satisfies Eq. (1.1) and condition 
(1.2) outside a certain semicircle with its centre in the free surface. In the case when v < k, the source 
and dipole potentials decrease at infinity and there is no wave term. Hence, when v < k, the solution 
of problem (1.1)-(1.4) has an estimate at infinity O(Ix + iyl -n) for any n > 0. 

It is well known (for example, see [4, w 2.2.1]) that the energy functional 

I ([Vul2 + k2lulE)dxdy < oo (1.6) 

w 

is bounded in the case of the solutions of the homogeneous problem ( f  = 0) when v > k. Hence, the 
uniqueness of the solution of the homogeneous problem (1.1)-(1.5) when v > k and of problem 
(1.1)-91.4) when v < k is equivalent to the absence of solutions of problem (1.1)-(1.3), (1.6) when 
f = 0. Without loss in generality, it can be assumed that the solution of the homogeneous problem is 
a real potential. 

The homogeneous problem (1.1)-(1.3), (1.6) ( f  = 0) can be considered as a problem involving finding 
a point spectrum, where v is an eigenvalue and u is an eigenfunction or, in other words, a trapped mode 
of oscillation. Since, when v > k, problem (1.1), (1.2) admits of a solution with infinite energy (due to 
wave formation at infinity) in this case it is possible to speak of a point spectrum which is imbedded in 
a continuous spectrum. 

The aim of this paper is to find the subsets of the parameter space in which problem (1.1)-(1.3), (1.6) 
w h e n f  = 0 does not have trivial solutions or, to put it differently, to find estimates of the trapped-mode 
frequencies. The approach proposed in [1] for k = 0 is developed for this purpose. It will be shown 
that the method is applicable in the case when k ~ 0 and that it enables one to obtain estimates of the 
trapped-mode frequencies both in the continuous spectrum as well as outside of it. 

A fairly complete review of papers dealing with the question of the existence of trapped modes and 
estimates of the corresponding frequencies is available [4]. In the case of the problem being considered, 
the majority of the results refer to the special case when k = 0 when the motion of the liquid is described 
by Laplace's equation. 
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The existence of trapped modes when v > k in the general case when k ~ 0 has only been established 
for partially submerged bodies (see [5]), although it is possible that the approach, which was used to 
obtain examples of non-uniqueness [6] in the case of completely submerged bodies when k = 0, can 
be generalized to construct examples in the case when k ~ 0. 

The existence of solutions of the homogeneous problem (1.1)-(1.3), (1.6) has been established [7-9] 
for submerged bodies of arbitrary form in the range v < k, and theorems for comparing the eigenvalues 
for the embedded domains (the principle of monotonicity) have also been proved [9]. A numerical 
investigation of the symmetric trapped modes for circular cylinders has been carried in [10] and formulae 
have been derived for estimates of the lower limit of the trapped-mode frequencies. More universal 
approaches to obtaining estimates have been proposed in [11, 12]. 

The problem of uniqueness when v > k as been far better studied for the special case when k = 0 
and for partially submerged bodies when k r 0 (see [4, Ch. 1, 13]). There are two basic schemes for 
proving uniqueness: the John scheme (1950, see [4, section 3.2] and, also, [11]) and the so-called Maz'ya 
identity (1973) (for a detailed description, see [4, section 2.2]). Both schemes impose substantial geo- 
metrical constraints. The John scheme is ineffective in the case of bodies which are fairly remote from 
one another in a horizontal direction. The scheme based on the Maz'ya identity is in a certain sense 
the opposite. Having found a vector field with the required characteristics, it is possible to produce certain 
configurations of the bodies which do not sustain trapped modes. 

A new scheme [1] for proving uniqueness and for obtaining estimates of the trapped-mode frequencies 
has recently been proposed. The method is based on the combined use of Green's identity and the 
maximum principle for elliptic operators and it enables one to consider systems of any number of bodies 
of arbitrary geometry. At the same time, there is no characteristic constraint for schemes based on the 
John approach associated with the distance between the bodies. 

The criterion of uniqueness [1] takes the form of an inequality which includes an integral over the 
wetted surface, and the integrand includes arbitrary Green's functions. The inequality can be checked 
numerically. At the same time, estimates of the gradient of Green's function enable one to obtain simple 
estimates of the uniqueness domain in the parameter space of the problem, the frequency (or wave 
number) and the depth of immersion of the system of bodies. In particular, the estimates guarantee 
that there are no trapped modes for a sufficiently great depth of immersion or sufficiently high frequency 
values. Below, it will be shown that the method provides estimates of the trapped-mode frequencies 
both in the continuous spectrum when v > k (where the method has no analogous when k ~ 0) as well 
as in the range where v < k (where the method has certain advantages and disadvantages compared 
with the corresponding estimates in [11, 12]). 

2. G R E E N ' S  F U N C T I O N  AND THE C R I T E R I O N  OF U N I Q U E N E S S  

We will use the notation G(x, y; x0, Y0) for the potential of a source located at the point (x0, Y0) and 
calculated at a point (x, y). Then, when Y0 < 0, the potential G, as a function of x and y, satisfies the 
equations 

2 
Vfx" y)G - k2G = - ~ ( x  - x o, y - Yo), Yo < 0 

O y G - V G  = O, y = 0 

where ~5 is the delta-function. Moreover, the potential G must be bounded in the domain y < 0 with 
the neighbourhood of the point (x0, Y0) cut out. 

We have (see [7], for example) 

Ko(kr_) -  Ko(kr+) l j  
G ( x ' y ; x ~ 1 7 6  = 2n + H(y+yo ,  t ) c o s ( x - x o ) t d t  (2.1) 

o 

where 

r+_ = [ ( X - X o )  2+(y_+yO)2]  I/2 

Kn(z ) = Je-ZChl~ehnp.dp., H(z, t) = 

o 

zJ,2+k 2 (2 .2)  e 

 +k2_v 
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(Kn(z) is the modified Bessel function, see [14], for example, formula 8.432.1). The integrand in formula 
(2.1) has a first order pole when v > k and, in this case, the integral is evaluated in the sense of the 
principal value. 

We now apply the third Green's identity to the hypothetical trapped mode, that is, to the solution 
of the homogeneous problem (1.1)-(1.3), (1.6) and to Green's function G. Taking account of the 
condition on the free surface and the boundedness of the potential and its derivatives at infinity, we 
find 

U(Xo, Yo) = Iu( x, Y)~,(x, y)G( x, Y; Xo, yo)ds(x, r), (x0, Y0) e W (2.3) 
s 

It follows from the last formula that 

lu(x0, Y0)[ < max {lu(x, y)l}~[~,~,y)G(x, y; Xo, yo)ldst~,y) 
(x,y)~ S 

S 

Note that Green's function can be analytically extended form the domainy < 0 into the domainy < -Y0 
(this follows, in particular, from equality (2.1)). Hence, representation (2.3) is also suitable for points 
(x0, Y0) belonging to the free surface. We therefore conclude that 

suplul--maxlul sup I ~l~,(x,y)G(x, y; xo, Yo)lds(:,,y)} 
F S (Xo, Yo)~ F ( S  

(2.4) 

We now compare the quantities SUpFIU I and max s I u I- We first note that Hopf 's  powerful maximum 
principle (see [15, theorem (3.5)], for example) guarantees that the potential u, which is not constant 
and satisfies Eq. (1.1), cannot reach a non-positive minimum and non-negative maximum at an internal 
point of any finite subset of W. This assertion also holds for the whole of the unbounded domain W 
and it is sufficient to note that the potential of a trapped mode decreases at infinity. 

Suppose the wetted surface of the bodies S is fairly regular, that is, it belongs to the class C 1, and 
that the "condition of an internal sphere" (the point must lie on the bounda ~  of a circle located in the 
domain 14/) is satisfied at all of its points. In particular, contours of the class C 2 satisfy these conditions. 
With these constraints, the assertion [15, Lemma 3.4] holds for any finite domain W0 C W which 
guarantees that, at the point on the boundary at which u reaches a maximum non-negative (minimum 
non-positive) value, any derivative along a direction which is external with respect to the domain is strictly 
positive (negative). 

We now consider the domain Wn = W A { Ix 2 + y21 _< R}. It is obviously possible to find a sufficiently 
large value of R such that the maximum value of l u I is reached on the surface of the bodies S or on a 
section of the free surface Fn = F fq { Ix l -< R}. We also note that, if the maximum in l u I corresponds 
to the maximum of the function u, then this maximum is positive and, if it corresponds to the minimum, 
then this minimum value is negative. Consequently, it is possible to make use of the assertion which 
has been presented above, according to which max lul in the domain Wn cannot be reached on the 
surface S since this contradicts condition (1.3). It is therefore established that either u = 0 in the domain 
Wor  

supFlul > maxslul 

On combining the last inequality with (2.4), we arrive at the following assertion: if the inequality 

sup ~( ! lO,t,, y)G(v, k; x, y; xo, Yo)ldstx, y) } < l 
(Xo, Yo) ~ 

(2.5) 

is satisfied for a given configuration of the bodies S and specified values of the parameter v and k, then 
the homogeneous problem (1.1)-(1.3), (1.6) has only a trivial solution. It has been shown in [1] that 
this assertion can be extended to the case of contours with corner points and cuspidal points protruding 
into the liquid. It can also be proved using the well-known results in [16] that the last assertion holds 
for configurations which satisfy an external cone condition. In particular, corner points protruding into 
the interior of bodies are permissible. 
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Following the approach described earlier in [1], it can be shown that the criterion presented can be 
strengthened using auxiliary potentials Oi which satisfy relations (1.1) and (1.2), and criterion (2.5) can 
be replaced by the inequality 

, o ,  y xo 
(x0, Y0) r " S  i i 

(2.6) 

where a i = a i (xo ,  Yo) are coefficients which can be determined using the minimization problem 

n~n Sl~n(x.y)G(x,y;xo, Yo)+Eai~n~i(x,y;xo, Yo)lds,x.,), (xo, Yo)~F 
ai' a2" " 'S  I i 

This is a problem of linear programming, and there are efficient algorithms for its numerical solution 
(the simplex method). The simple wave solutions eVYe • and the singular solutions of problem (1.1), 
(1.2) with the discontinuity located within the bodies, that is, multipoles or simpler wave-free singular 
potentials Re{~n(X , y; x0, Y0)}, Im{~n(X, y; x0, Y0)}, can be used as the auxiliary potentials Oi(x, y; 
x0, Y0). Here, 

Wn( x" Y; Xo, YO) vKn(kr )einX inx§ 
= _ -_ VKn(kr+)e - 

- Kn•177 , n = 0,1,2 . . . .  
• 

r• are defined by formulae (2.2), and x• are defined by the relations 

x - x  o = r sinz_ = r+sinz+, y = r cos'~ + y  0 = - r+cos ' l :+ -y  0 

Note that the quantity sup in formulae (2.5) and (2.6) is defined in the unbounded set F which, of  
course, is unacceptable from the point of view of the applicability of the criterion for numerical 
implementation. The part of the free surface, in which it suffices to verify that criterion (2.6) is satisfied, 
can be found using estimates of the gradient of Green's function which will be obtained below. This 
has been described earlier in greater detail in [1] where examples of the numerical investigation of the 
problem of uniqueness on the basis of criterion (2.6) for k =  0 can be found. 

3. E S T I M A T E S  OF T H E  D E R I V A T I V E S  OF G R E E N ' S  F U N C T I O N  

Using representation (2.1) and introducing the notation Go = G(x, y; x0, 0), we find 

~ G o =  - l  itH(y, t )sin(x-  xo)tdt 
0 

OyGo = 1~ t2~-~+ k2H(y ' t ) cos (x -xo) td t  

0 

(3.1) 

(the integrals are evaluated in the sense of  the principal value when v > k). 
We make the replacement of variables [3, Section 2] and write 

k i exp {-kr_ch(~t - iq0} k v 
OyG 0 = J(I.t)ch211dlj,, J(I,t) = c h l i _ ~  ' = (3.2) 

The quantity tp is defined by the relation tgtp = (x -x0)/y such that ~0 e (-n/2, n/2) wheny  < 0. In the 
case when v > k, the integrand has two poles on the real axis and, when v < k, the poles are located 
on the imaginary axis at the p~nts  IX = __.i(arccos(~,) + 2nn) (n = 0, 1, 2 . . . .  ). Later in this section, we 
will consider values of ~, > 1/~/2. 
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We will first return to the case when tp e [0, ~z/2). On shifting the contour of integration upwards 
(~t ~ ~t + ix~4), we find 

where 

+ v2evy~l-lsin/(x-- x0) when ~, > 1 

~yGo = 2~Iy(x-xo 'Y)  [1-.le t~176 when 2Le ( l / , f} ,  1) 
(3.3) 

1. = 4 / ~ -  v 2, Iy(X - Xo, y) = ~ J(~t + iTt/4)ch2(I a + ixl4)d~t (3.4) 

We introduce the notat ion 

�9 c(~t) = kr_cos(Itl4-tp)ch~t, ~s(~t) = kr_sm(ltl4-9)sh~t 

Using the last formula of (3.4), we find 
o o  

1 Iy(x-xo,  y ) = ~ ~ f!kt!exp{-dac(~t)}d~ t 
g(~t) 

--oo 

f ( ~ )  = (4r2ch~tch2~t - 2~,)cos(tbs(I.t)) + (4r2ch21x + 42Lchl.t)shl.tsin((bs(lx)) (3.5) 

g(la) = (~f2~,- ch~t) 2 + sh21.t > 0 

It is obvious that  

If(~t)l --< ,~ch21.t~/chElx + shEla + 2k , f l  + 4ch2~sh2~t = ch21x( 2 c ,  f 2 - ~ l x  + 2~,) 

Taking the relation ch2 ~t = 2 chEI.t - 1 into account, we have 

If(la)l < chlafl(ch~t) ,  If(~t)l < ch2p, fE(Ch~t) 
(3.6) 

f l ( t )  = 4 t 2 + 4 ~ , t - 2 ,  f2( t )  = 2 t+2~,  

Since ch~t > 1, it is convenient to make the  change of variable t ~ z 2 + 1 in f l  and f2 and ch~t ---) 
z 2 + 1 in g. We obtain 

f l ( z )  = 4z 2 + 4(2 + ~,)z 2 + 2 + 42L, f2(z)  = 2z 2 + 2~, + 2 

g(z) = 2z 4 + 2(2 - ,4/2~,)Z 2 + 1 -- 2~/r2~, + 2~. 2 

We will seek the coefficients cl and c2 such that  f , (z)  - c,g(z) < 0 (n = 1, 2). Analysis shows that  the 
graph of the functionfn - c,g touches the abscissa either at two symmetric points or at zero. On satisfying 
the conditions 

we find 

! ! 

fn (z ) -cng(z  ) = 0, fn (z ) -cng(Z)  = 0 

2 ( l + ( 3 - n ) k )  when 1 
C n (l_4r~2L)2 ~ < E < 2 L  n, n = 1,2 

C 1 ---- 

C 2 = 

- 2  + 2L(2 + ,f2)(~, + ~/42L 2 -  24c2x 2 -  1) 

~ 2 _  1 

X(2 + ~ )  + 4~(~, + ~4~, 2 + 2,4r2~ 2 - 1) 

2(~, 2 -  1) 

when ~, > ~'l 

when ~, > ~,2 

(3.7) 
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~.1 = -  1 + ~ 2 ( 5  + 3 ~ ) ,  ~.2 = - 1 + .f2 + ~a/2(3-  ~ )  

It is obvious that ~ > 1, and formulae (3.7) therefore define the continuous dependence of cn as a 
function of ~ when ~. > 1/4-2. 

Finally, combining formulae (3.5) and (3.6), we obtain the estimates 

[ly(x-xo, Y)[ < ~ i chnllexp{-Oc (ll)}dtt = 

Cn 7s -~Ka(kcos(~-(p)r  ) cn [kr_'~ : " : 1,2 

Applying the transformations indicated above to the integral in the first formula of (3.1), we obtain 

0,c0 -- i s( )ch sh . (3.8) 

We will again consider the case when q~ s [0, 7s On shifting the contour of integration upwards 
(g --~ g + i7s we find 

k _ Xo, y )_  ~fc~ when ~ > 1  (3.9) 
0~G0 2---~Ix(x VeVY[et.(~-~o) when ~. ~ (1/4~, 1) 

Nothing that 

where 

we derive the estimates 

1 ~ ~ e x p { - * * ( l l )  }d~ t,(X-Xo, y) = 

s(~t) = ch2~t{(2~,- ,4~chlx)cos(~(ll))  + ,~sh~tsin(~(I. t))} 

[s(~t)l < ch2~t( 2 ~ l a  + 2~,) 

Is(vt)l <- chlafl(chtt) ,  Is(vt)l < ch21J.f2(chla) 

Similar calculations can be carried out in the case when r ~ (-n/2, 0] using a shift in the contour of 
integration IX --> IX - i7s in representations (3.2) and (3.8). We therefore finally obtain 

c n t'kr ~ c n fkr_~ 
II, ( x -  Xo, Y)i < ~-K.[--~J, Ilx(x - Xo, Y)i < ~-K.[--~_I (3.10) 

\,.v/2 d \,%/L / 

4. E S T I M A T E S  OF THE T R A P P E D - M O D E  F R E Q U E N C I E S  

We will now consider a certain system of bodies S(IO immersed at a depth 

Y = max{y: ( x , y ) e  S}, Y<0  

The estimates of the derivatives of Green's function and criterion (2.5) enable us to find the subset of 
the space (v, k, Y) in which the homogeneous problem (1.1)-(1.3), (1.6) has only a trivial solution. 
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Using relations (3.3), (3.9) and (3.10), we write 

f lOn(x, y)Golds(x, y) < f q(v, k, y)ds(x, y ) 
S S 

ql(V,k,y) when O<v_<k/4~ 

q(v,k, y) = lmin{ql(V,k, y),q2(v,k, y)} when ki l t2<,  <k (4.1) 
! 

(qz(v, k, y) when v > k 

1Eli 17 qj (v, k, y) = tH(y, t)dt + + k2H(y, t)dt 

rrfin J FcnKnfklYI~] 2 H q2(v 'k 'Y)= L,vZ+lv2-'-k2l)e +8~.=,,z[k ~.~) JJ 

The coefficients cl and c2 are defined by formulae (3.7) (where ~. = v/k). 
The boundary of the subset in the space of the parameters (v, k; Y) in which the inequalities (2.5) 

and (4.1) guarantee that there are no non-trivial solutions of the homogeneous problem (1.1)-(1.3), 
(1.6) is given by the relation 

f q(v, k, y)ds(x,y ) = 1 (4.2) 
s(r) 

The function q(v, k,y) decreases monotically as the depthy increases, and the absence of trapped modes 
is therefore guaranteed for sufficiently large values of Y and, also, for sufficiently large values of the 
parameter v. The latter fact follows from the estimateeq2(v,/~ y) = O(v -1) when v ~ oo. 

When v/k ~ 1, we have q2(v, k, y) - k e ky I k - v ] , and the graph of the function Y(v, k) which is 
defined by relation (4.2), has a singularity. The asymptotic form of the dispersion relation 

va - (3n)-1/2eVd(k21v 2 - 1) 1/4 

On approaching from below the boundary of the continuous spectrum (v/k ~ 1 - 0) have been obtained 
in [7] in the case of the natural mode, which is symmetric with respect to x and corresponds to the largest 
value of the ratio v/k for a circular cylinder of radius a with its centre at a depth d. From relation (4.2) 
we obtain 

va - (2~)-IeVdlk21v 2-1]1/2 when vlk ~ 1 

It is obvious that the asymptotic from of the estimate is found to be in accordance with the asymptotic 
form of the dispersion relation, although not exactly. Here, account must be taken of the fact that the 
asymptotic form of the dispersion relation is established for the greatest natural frequency located below 
the boundary of the continuous spectrum and the symmetric natural mode, while Eq. (4.2) serves to 
estimate all the corresponding modes both in the continuous spectrum as well as outside it. 

The results of a numerical investigation of uniqueness using formula (4.2) are shown in Figs 2 and 
3, where they are compared with previously obtained results (see [12] and [11] respectively). 

The results of calculations for a circular cylinder of radius a with its centre at a depth d are shown 
in Fig 2. In the case of this geometry, the previously obtained estimates [12] guarantee that there are 
no trapped modes in the domain defined in the parameter space of the problem by the solutions of the 
equation 

K l ( k a ) - K l ( k ( 2 d - a ) ) -  k Jo ,f-~t2+-k2-v = (4.3) 

For d/a = 3, 4, 5, the boundaries of the uniqueness domain for the solution of problem (1.1)-(1.4), 
which are given by Eq. (4.2), are shown by a solid curve and the boundaries obtained using Eq. (4.3) 
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are shown by a dashed curve. The absence of trapped modes is guaranteed in the domains located under 
the curves. It should be noted that the previously obtained estimates [12] are more accurate but, at the 
same time, unlike condition (4.2), they are only suitable for v < k and only in the case of a single 
completely submerged body (since they were obtained using the principle of monotonicity [9]). 
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The results of a numerical investigation of condition (4.2) and a comparison with the results obtained 
by Simon [11] for two circular cylinders of radius a with centres at a depth d for a distance between 
the centres 21 and when ka = 1/2, 3/2 are shown in Fig. 3. In the case of this geometry when v < k, 
Simon's estimates guarantee that there are no trapped modes if 

vk -l < sin { arctg (d1-1)  - arcsin [a(d 2 +/2)-1/2] } 

The boundaries of the uniqueness domain for the solution of problem (1.1)-(1.4) and (1.1)-(1.5), 
obtained using formula (4.2), are shown by a solid curve and Simon's results when l/a = 1, 3, 5 are shown 
by a dashed curve. The absence of trapped modes is guaranteed in the domains located under the curves. 
The estimates (4.2) are independent of the distance between the bodies in a horizontal direction, so 
that they have an advantage compared with Simon's estimates when there is a large distance between 
the bodies. At the same time, it should be noted that the results in [11, 12] are only applicable for values 
of v < k. There are no analogues of the estimates in this paper for values of v > k (in the continuous 
spectrum of the problem). 
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